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In this study we attempt to deal with process planning, scheduling and preventive
maintenance (PM) decisions, simultaneously. The objective is to minimize the
total completion time of a set of jobs on a CNC machine. During the process
planning, we decide on the processing times of the jobs which are controllable
(i.e. they can be easily changed) on CNC machines. Using shorter processing
times (higher production rates) would result in greater deterioration of the
machine, and we would need to plan more frequent PM visits to the machine,
during which it would not be available. Therefore, the selected processing times
determine not only the completion times but also the PM visit times. We first
provide optimality properties for the joint problem. We propose a new heuristic
search algorithm to determine simultaneously the processing times of the jobs,
their sequence and the PM schedule.

Keywords: Scheduling; Preventive maintenance; CNC machines; Total completion
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1. Introduction

This study is an attempt to develop an integrated decision support system for
preventive maintenance (PM) management, machine scheduling and process
planning. We consider a single CNC machine, on which we can control the
processing times by setting the machining conditions such as cutting speed and feed
rate. We basically aim to answer the questions of when to make a PM visit to a
machine, in what sequence to complete the jobs and at what processing times to
operate them, simultaneously. The objective to minimize is the total completion time.
To the best of our knowledge, in the literature and in current industry practice, these
issues are considered either independent of each other or one being just a constraint
for the others. Therefore, we introduce a model to combine these decisions
by considering their effects on each other.

In the scheduling literature, most of the studies considering PM visits usually
assume predefined PM visit times which form availability constraints during which
no jobs can be operated on the machines. In practice, we can usually decide when to
make a PM visit to a machine. Usually, a PM visit schedule is a decision to make
rather than a constraint to satisfy. In this paper, we consider PM visit times as
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decisions to be made in conjunction with machine scheduling decisions. Also, most
of the literature and industry practice consider PM as an activity independent of the
selected operating conditions on the machine, and they typically assume that these
activities are made periodically (e.g. the time between two consecutive PM visits
is fixed). However, the selected operating conditions (or production rates) influence
the maintenance requirements of the system. If you run a machine under harsh
conditions, you need to overhaul it more frequently. We employ a condition-based
maintenance model that schedules the PM visits on a CNC machine by considering
the selected processing times of the jobs on the machine.

A recent study that integrates process planning and condition-based maintenance
scheduling decisions is that of Koomsap et al. (2005). They propose a model that
collects information on the current condition of a machine in order to estimate its
remaining useful lifetime. Their model uses the remaining useful lifetime information
to revise the operating parameter selection decisions and/or the maintenance
scheduling decisions for the machine. In this paper, we present a model that
integrates process planning decisions with PM visit decisions via a condition
parameter for the machine. In our model, the selected processing times (operating
conditions) for the jobs determine the condition parameter value for the machine
which is used to schedule PM visits to the machine.

We propose a model that makes scheduling, processing time selection and PM
visit decisions simultaneously. Our model involves the effects of each decision on the
others in order to minimize a scheduling objective. Such a decision support system
can also be used as a tool in preventive maintenance management applications of
computerized maintenance management systems (CMMS). MAXIMO is a CMMS
where we can use our model for the purpose of integrating the work order generation
process for the PM visits with the machine scheduling and process planning
decisions.

In the scheduling literature, machine availability has received considerable
attention. Adiri et al. (1989) study minimizing the flow time on a single machine with
a single breakdown. They show that, for the case of a concave probability
distribution for a breakdown, the shortest processing time first (SPT) rule minimizes
the flow time. The SPT rule orders the jobs in ascending order of their processing
times. They also show that the SPT rule minimizes the flow time under multiple
breakdowns with an exponential distribution. For the deterministic case in which the
breakdown times are known, they prove that finding a schedule that has a flow time
less than a given value is NP-complete. Lee and Liman (1992) also study the
deterministic case and find a tight worst-case bound of 2/7 for the SPT rule.
For a recent review of studies on machine scheduling with availability constraints,
we refer to Lee (2004).

There are also studies (similar to this study) that consider the start time of a
non-availability period as a decision variable. Lee and Leon (2001) consider the
decisions of when to schedule the rate modifying activity and sequence of jobs to
optimize different regular scheduling measures, including total completion time,
when there is a single maintenance period. Graves and Lee (1999) study the same
problem and show that if there is exactly one maintenance period, then the total
completion time problem can be solved polynomially by a modification of the
SPT rule. Therefore, the main decision is to determine the set of jobs before and after
the maintenance activity. Qi et al. (1999) study the total completion time of jobs
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on a single machine with multiple maintenance intervals of variable duration,
and prove that this problem is NP-hard in a strong sense. Akturk et al. (2004) and
Qi (2007) establish the theoretical worst case performance of the SPT rule for this
particular problem. Cassady and Kutanoglu (2003, 2005) also consider the
preventive maintenance planning and production scheduling decisions simulta-
neously to minimize the total weighted tardiness and total expected weighted
completion time, respectively. Jeong et al. (2006) add a diagnosis module in addition
to maintenance planning and scheduling modules, and present an integrated decision
support system for electronics manufacturing systems.

In contrast to these studies we deal with a scheduling problem where we can
control the processing times of the jobs and the PM visit times (unavailability
periods) on the machine simultaneously. It is important to note that the time between
two consecutive PM visits should be shorter if we prefer higher production rates
(shorter processing times), since this applies more cutting power and temperature on
the machine. Controllable processing times have been receiving increasing attention
in the recent scheduling literature. Hoogeveen (2005) gives a review on controllable
processing times in multi-objective scheduling problems.

In the next section we give the problem definition and discuss the integrated
approach. In section 3 we present the optimality properties for the problem.
In section 4 we give the proposed heuristic search algorithm and apply it to a
numerical example. In section 5 we discuss the computational results. Finally,
we give the concluding remarks in section 6.

2. Problem definition

We have N jobs to be processed on a single CNC machine. We can control the
processing times by setting the cutting speed and feed rate. However, selecting the
cutting speed and feed rate is subject to technological constraints such as maximum
applicable machining power, maximum allowable surface roughness and available
tool life. Kayan and Akturk (2005) discuss the machining conditions selection
problem for CNC turning machines and show that these technological constraints
imply a lower bound on the processing time of a turning operation. The overall
problem is to decide the processing time of each job, and to schedule the set of jobs
and the required PM visits based on the selected machining conditions (i.e. cutting
speed and feed rate), simultaneously. The objective is to minimize the total
completion time of the jobs. Note that since the machine is not available during the
PM visits, how many PM visits to schedule and when to schedule them are critical
decisions for the total completion time objective. The notation for the rest of the
discussion is as follows.

pi processing time of job i (min)
pli processing time lower bound of job i (min)

M( pi) PM priority index for job i at processing time pi
Cpm cost of a preventive maintenance visit ($/visit)
TPM duration of a PM visit to the machine (min)

A,B,T,k,r PM index function related parameters
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Xij 1 if job i is scheduled at position j, and 0 otherwise
Ykl 1 if there is at least one PM visit between positions k and l

In this study, we introduce a new PM policy that uses processing time data while

making PM visit scheduling decisions. This PM approach considers the fact that,

as the production rate of a CNC machine increases (processing times decrease), we

have to plan more frequent PM visits. This implies incurring more PM costs. In the

existing PM approaches, one of the important parameters is the fixed and known

mean time to failure (MTTF), which comes from a certain probability distribution

function. This makes sense if we always run the CNC machine with the same cutting

speed and feed rate for every manufacturing operation regardless of the work

material, surface finish requirements, etc. But, in reality, we can change the

processing times to optimize some performance measure. As a result, for a given

operating time period T (which could be one week or one month depending on the

available past shop floor data to estimate the related parameters), we can use the

following PM cost function given by Akturk and Gurel (2007):

PM cost ¼ Aþ B � rk ð1Þ

In the PM cost function, r is the production rate of the machine and A is the PM cost

of the machine for time period T if no job is processed on the machine. This cost is

due to the fact that we need to check and maintain the machine even when it is idle

in order to keep it ready to operate when needed. When r¼ 0 we pay a cost of A for

maintenance. A, B and k are dependent on T and on the cost of a single PM visit,

CPM, which is assumed to be constant. An older machine would have higher B and k

since it would require more frequent PM visits. We can determine the constant

parameter B and exponent k empirically based on past shop floor data. The PM cost

function is increasing and convex, so we have B40 and k� 1. Assuming that the

processing times of the jobs operated during T are all p, we can express the

production rate of the machine as r¼ 1/p. Then, the PM cost function can be written

in terms of the processing time as follows:

PM cost ¼ Aþ B=pk: ð2Þ

Since we have the total PM cost for the operating period of length T, we can find the

PM cost per job by dividing the total PM cost by the number of jobs completed in

that period, which is T/p,

PM cost per job ¼
A � pk þ B

T � pðk�1Þ
: ð3Þ

However, in practice, each job could have a different processing time, therefore

we have to find the contribution of each job to the PM requirement of the machine,

which is given by the ratio of its PM cost to the cost of a PM visit, CPM. This is a

value between 0 and 1 and gives a measure of the portion of a PM visit cost due to

the considered job. We will call this measure the PM priority index of a job and the

general expression for the PM priority index of job i is

Mð piÞ ¼
A � pki þ B

CPM � T � p
ðk�1Þ
i

: ð4Þ
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The shape of the PM index function by processing time is given in figure 1.
This index is calculated for each job that will be processed on the CNC machine

and it indicates the PM requirement of the machine caused by this particular job.

The sum of the PM indices of the jobs completed since the last PM visit is an

indicator of the current PM need of the machine. When it reaches 1, then we need to

schedule a PM visit to the machine, i.e. the sum of the PM indices of the jobs between

two consecutive PM visits cannot exceed 1. Consequently, the proposed PM index

can be used to provide an intelligent CNC machine degradation assessment, since it

provides a condition parameter to be monitored to schedule PM visits to the CNC

machine.
The problem is to find the optimal job and PM visit schedule and processing

times of the jobs so as to minimize the total completion time of the schedule.

The mathematical model for the problem is

min
XN

i¼1

XN

j¼1

ðN� jþ1ÞXij � pi ð5Þ

þ TPM

XN�1

j¼1

ðN� jÞYjð jþ1Þ; ð6Þ

subject to

XN

j¼1

Xij ¼ 1 i ¼ 1, . . . ,N ð7Þ

XN

i¼1

Xij ¼ 1 j ¼ 1, . . . ,N, ð8Þ

ð1� YklÞ
Xl

j¼k

XN

i¼1

Xij �Mð piÞ � 1 k ¼ 1, . . . ,N� 1, l ¼ kþ 1, . . . ,N, ð9Þ

Ykkþ1 � Yjkþ1, k ¼ 1, . . . ,N� 1, j ¼ 1, . . . , k� 1 ð10Þ

pu

PM
 in

de
x

Processing time

Figure 1. PM index versus processing time.
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pi � pli, i ¼ 1, . . . ,N, ð11Þ

Xij 2 f0, 1g and Ykl 2 f0, 1g; i, j, k ¼ 1, . . . ,N, l ¼ kþ 1, . . . ,N: ð12Þ

The objective function of the problem is composed of two parts. The first part (5)
calculates the total processing time effect. The processing time effect of a job is its
processing time plus its contribution to the completion times of all succeeding jobs.
If we increase the processing time of a job by one unit, then the completion time of
the job itself and the completion times of all succeeding jobs increase by one unit.
The second part (6) calculates the total PM effect. The PM effect of a PM visit is the
contribution of its duration to the completion times of all succeeding jobs. If we
insert a PM visit between two jobs in the schedule, then all jobs succeeding the
inserted PM visit are shifted backward and their completion times are increased by
the duration of the PM visit. Between the two terms in the objective function there is
an interesting trade-off that we have to deal with while solving the problem. If we
decrease the processing times of the jobs to improve the processing time effect, then
we need to have more PM visits, which increases the PM effect. Therefore, we cannot
minimize both terms at the same time. This observation motivates the heuristic
search algorithm which will be described in section 4. Constraint sets (7) and (8) are
the assignment constraints that guarantee that each job is assigned to a position and
each position is assigned to a single job. Constraint sets (9) and (10) ensure that the
sum of PM indices between two PM visits does not exceed 1. Constraint set (11) sets
a lower bound on the processing time of each job due to the machine and job related
technological constraints.

What makes this total completion time problem interesting and difficult is the
PM constraints (9) and (10). If we did not have these two sets of constraints, then we
could easily set the processing time of each job to its processing time lower bound
and order the jobs by the SPT rule. However, processing a job at different processing
times has different consequences for the machine. In order to decrease the processing
time, we need to run the machine at higher power due to the increased cutting speed
and feed rate. This means greater force and higher temperature acting on the
machine so that more wear takes place on the machine and the risk of sudden failure
increases so that the machine requires more frequent PM visits.

The total completion time problem with fixed processing times and unavailability
constraints such that a machine can operate at most T40 hours between two PM
visits was shown to be NP-hard by Qi et al. (1999) and Akturk et al. (2004). In this
study, we have controllable processing times and employ a nonlinear PM index
function for PM scheduling decisions, therefore we deal with a more difficult
problem. However, we have some information concerning the characteristics of the
optimal solution, as discussed in the next section.

3. Optimality properties

For the total completion time problem with availability constraints and index-based
PM scheduling decisions, we now present some optimality properties. The first is
related to the optimal job sequence in a PM block (the set of jobs between two
consecutive PM visits).
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Property 3.1 (SPT in a PM block): Between two consecutive PM visits, the SPT
rule is optimal.

We can prove this property by pairwise interchanging adjacent jobs to see that
a sequence not satisfying this property cannot be optimal. This property is common
for the total completion time problems in Qi et al. (1999) and Akturk et al. (2004).

Property 3.2 (PM block utilization): In an optimal schedule, for each PM block J,
either all jobs in the block must have pi ¼ pli or the sum of PM indices of the jobs in
block J must be 1, i.e. �i2JM( pi)¼ 1.

Proof: Assume that the opposite holds, i.e. pi > pli for some job i2 J and
�i2JM(pi)51. Then, the objective can be improved by decreasing pi without

violating the total PM index constraint for the block, which proves the property.œ

Property 3.2 states that, in an optimal schedule, for each PM block, either the
processing time of each job in the block equals its lower bound, which means
processing times cannot be decreased further, or the total PM index of the block
equals 1, which means the block is fully utilized. We can illustrate this property by a
numerical example. Consider a job i with pi¼ 1 andM( pi)¼ 0.2 in a PM block with a
total PM index of 0.95. Suppose that when pi¼ 0.9, then M( pi)¼ 0.25. If we set
pi¼ 0.9, then the total PM index of the block is 1 and the total completion time of the
schedule is decreased.

Property 3.3 (average job time): The PM blocks in an optimal schedule
should be in ascending order of their average processing times. Suppose that Di

and Dj are the total processing times, and ni and nj are the number of jobs in
blocks i and j, respectively. In an optimal schedule, block i precedes block j, if
(DiþTPM)/ni� (DjþTPM)/nj.

We can again prove this property by a pairwise interchange argument of two
blocks. This property is also similar for the problems in Qi et al. (1999) and Akturk
et al. (2004).

Property 3.4 (limits for the processing time of a job): In an optimal solution, each
job must satisfy the inequality pli � pi � maxð pli, p

uÞ where pu is the processing time
that gives the minimum PM index.

Proof: The left inequality above is a feasibility condition for the problem. The right
inequality is an optimality condition. As pi is increased beyond pu, M( pi) increases.
Increasing both pi and M(pi) increases the total completion time. Therefore, we
should not allow pi4pu unless pli > pu. œ

Qi et al. (1999) and Akturk et al. (2004) proved some optimality properties for the
total completion time problem with a maintenance or tool change constraint on a
single machine. These two studies assume that maintenance or tool change should
take place on a machine without exceeding a predefined operation time T.
Our problem is different than these two problems in the sense that they assume
that a job contributes to the PM need or tool need of a machine in proportion to its
processing time, whereas we assume, in contrast to the current studies, that smaller
processing time values (or higher cutting speeds and/or feed rates) may lead to a
higher maintenance requirement since more force will be exerted on the CNC
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machine. Thus, they have an optimality property that does not apply to our problem.
This property is as follows. In an optimal solution, ni� nj for any two PM blocks
i and j such that i precedes j. This property is not applicable to our problem, since the
PM index of a job in our problem may be higher for a job with a shorter processing
time. A counterexample for our problem can be generated which violates this
property. Suppose that we have five jobs assigned to two blocks. Block 1 has two
jobs with pi¼ 1 and M(pi)¼ 0.5 and block 2 has three jobs with pi¼ 2 and
M(pi)¼ 1/3. For the given schedule, n15n2 and the total completion for these two
blocks is 30. If we interchange the two blocks, we obtain a total completion of 33
with the first block in the sequence having more jobs than the second.
This demonstrates that our problem is quite different than those studied in the
literature.

4. Heuristic search algorithm

Considering the optimality properties given in the previous section and the trade-off
between the processing time effect and the PM effect components of the objective
function, we propose a heuristic search algorithm for the problem. Our search
algorithm includes two main parts: the branching process and the improvement
process. The branching process enumerates several points in the solution space in
a systematic way in order to find the best solution.

4.1 Branching process

The branching process starts with an initial schedule and applies a search procedure
to achieve an improved schedule. We form the initial schedule by setting pi ¼ pli for
each job i and ordering the jobs by the SPT rule. We add the PM visits into the
schedule by using the index-based PM policy as discussed in section 2. This is the
schedule in which the processing time effect is minimum. However, the PM effect is
too great due to there being too many PM visits. Hence, the branching process aims
to find alternative schedules with smaller PM effects. To do this, the branching
process moves jobs forward to the preceding PM blocks in order to reduce the
number of PM visits. Moving a set of jobs forward to a PM block requires increasing
the processing times of the jobs inside the block due to the PM index constraints.
Therefore, improving the PM effect results in an increased processing time
effect. The branching process generates alternative schedules by moving different
sets of jobs to different PM blocks iteratively and aims to achieve a solution
where the processing time effect and the PM effect components are balanced to
minimize the total completion time.

Having formed the initial schedule, the branching process first moves the jobs
scheduled immediately after the first PM visit to the first PM block. By moving
different sets of jobs forward to the first PM block each time, the branching process
generates C new schedules. We call these new schedules child schedules of the parent
(initial) schedule. The branching process forms the first child schedule of the initial
schedule by moving a set of jobs with total PM index of at most � to the first PM
block. Similarly, the kth child schedule is formed by moving a set of jobs with total
PM index of at most k�. If the total PM index of the jobs that can be moved is less
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than k�, then we move all of them regardless of their total PM index. We call the
generation of child schedules by moving jobs to the first PM block Stage 1.

When a set of jobs is moved to the first PM block, the total PM index of the block
exceeds 1, since the block is already fully utilized due to property 3.2. Then, for the
first PM block of each child schedule we must find the optimal job sequence and
corresponding processing times that minimize the total completion time of the new
schedule while the total PM index of the first block is less than or equal to 1.
The main aim of this subproblem is to minimize the total processing time effect of the
jobs in the PM block. In section 4.2 we propose three alternative algorithms to solve
this subproblem.

Provided that we have an algorithm to solve the PM block subproblem, the
branching process solves the subproblem for the first PM block of each new child
schedule formed. At the end of Stage 1, the branching process selects P child
schedules with minimum total completion times as the new parent schedules. We use
these parent schedules to generate new child schedules in Stage 2. In Stage 2,
we generate child schedules by moving the jobs scheduled after the second PM visit
forward to the second PM block. From each parent schedule, we again form C new
child schedules. This time we solve the subproblems for the second PM blocks of the
child schedules. Then, we select P parent schedules from these child schedules.
In Stage 3, we generate child schedules by moving jobs immediately scheduled after
the third PM visit forward to the third PM blocks of the parent schedules. Each time
the branching process moves jobs forward to a PM block, the PM effect component
improves but the processing time effect becomes worse. The branching process
continues in this way until no parent schedules can be found. For instance, if all the
child schedules in Stage 2 have at most two PM blocks, then no child schedule can be
a parent for Stage 3. The branching process enumerates several alternative schedules
in this way and outputs the best schedule it achieves. The branching process that we
have described above with parent solutions and child solutions, roughly resembles
a beam search method, but, differently, in our method each node represents
a complete schedule. An example of the application of beam search to scheduling
problems can be found in Ow and Morton (1988).

To illustrate child formation in the branching process, we give the following
numerical example. We have eight jobs to be scheduled, and the PM index function
is defined as Mð piÞ ¼ ð5p

2:5
i þ 1800Þ=ð3750p1:5i Þ. PM visit duration is TPM¼ 4.

The number of child schedules to be generated from each parent is C¼ 3 and the
number of parents to be selected at each stage is P¼ 2. The set of jobs to be moved
at each step is determined by �¼ 0.4. The initial schedule for the example is given
in figure 2, where the processing time of each job is set to its lower bound and the
jobs are ordered by the SPT rule. In figure 2, processing times and corresponding

pi

1

1.0 1.1 1.2 1.4 1.6 1.6 1.6 1.7
Mi 0.48 0.42 0.37 0.29 0.24 0.24 0.24 0.22

2 3 4 5 6 7 8

Initial schedule (total completion time=82)

Figure 2. Initial schedule for the branching process.
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PM indices are given below the Gantt chart. Each shaded time interval is a PM visit.
For the initial schedule, the total completion time is 82, which is the sum of the
processing time effect and the PM effect, which are 46 and 36, respectively.

In the numerical example, in Stage 1, we generate three child schedules from the
initial schedule. To form the first child schedule, we move a set of jobs with a total
PM index of at most 0.4, e.g. we move job 3 with a PM index of 0.37 forward to the
first PM block. We form the second child schedule by moving a set of jobs with
maximum total PM index of 0.8. Then, we move jobs 3 and 4 forward to the first PM
block. Finally, to form child 3 we move jobs 3, 4, 5 and 6 with a total PM index of
1.1251.2. Figure 3 shows the allocation of jobs to the PM blocks in the child
schedules achieved in Stage 1. Since the PM block subproblems are not yet solved,
the total PM index of the first block in each child schedule exceeds 1 and the current
schedules in figure 3 are infeasible. Figure 3 also shows how the remaining jobs
succeeding the first block are scheduled. As can be seen, moving jobs forward to the
first block reduces the number of PM visits required in child 2 and child 3. It is also
obvious that, with each new generated child schedule, the PM effect decreases or
remains the same.

In this subsection we have discussed the proposed branching process to search the
solution space. In the next subsection we will discuss the PM block subproblem and
present alternative solution approaches for the subproblem. We will also extend the
numerical example to illustrate the applications of different solution approaches for
the subproblem.

4.2 PM block subproblem

In the branching process, when we move a set of jobs forward to a PM block and
form a child schedule, we need to change the processing times of the jobs in the PM
block so that the total PM index of the jobs in the block is less than or equal to 1.
We need to find the optimal schedule and the corresponding optimal processing
times at the same time to minimize the total processing time effect of the jobs in a
given PM block. We propose three heuristics to solve this problem, namely the LP-
based method (LPB), the first update shortest method (FUS) and the total
completion index method (TCI).

1 8765432

1 3 4 5 6 7 82

1 3 4 5 62 7 8

Child 1

Child 2

Child 3

Figure 3. Child schedules in Stage 1 (before solving the subproblem).
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4.2.1 LP-based method (LPB). We first consider the case where there is a given job
sequence in a PM block. The problem is to minimize the total processing time effect
of the given n jobs in the block. The first job scheduled in the block is the kth job
of the entire schedule. Then, the second job is the (kþ 1)th job of the schedule,
and so on. In the model below, the subscript j in pj and plj indicates the jth job
in the sequence in the PM block. The mathematical model for the block subproblem
is as follows:

min
Xnþk�1

j¼k

ðN� jþ 1Þpj ð13Þ

subject to

pj � plj j ¼ k, . . . , ðnþ k� 1Þ; ð14Þ

Xnþk�1

j¼k

Mð pjÞ � 1: ð15Þ

The objective function (13) is the sum of the processing time effects of all jobs in
the block. Constraint set (14) ensures that the processing time of each job is greater
than its lower bound. Constraint (15) ensures that the total PM index of the jobs in
the block is less than or equal to 1. The above formulation is a separable nonlinear
programming model, since each nonlinear term in constraint (15) is the PM index
function of a distinct job j and formed of a single variable pj. Furthermore, each term
is a convex function of pj since M( pj) is a convex function. We can solve the problem
approximately as discussed by Bazaraa et al. (1993) by applying the simplex method
to the piecewise linear approximation of the model.

In order to achieve a piecewise linear approximation of the above model, we
generate a set of breakpoints for the PM index function M(pj). Using these
breakpoints, the processing time pj in the previous model can be expressed as

pj ¼ �j1 � �j1 þ � � � þ �jBj
� �jBj

,

where �jl are the breakpoints and �jl are the coefficients for job j such that 0� �jl� 1
for all l and �j1þ � � � þ �jBj¼ 1. Bj is the number of breakpoints for job j. Here, �j1

is the minimum processing time plj for job j and �jBj is the highest breakpoint, which
equals pu. Then, after applying piecewise linear approximation, the model is as
follows:

min
Xnþk�1

j¼k

Xl¼Bj

l¼1

ðN� jþ 1Þ�jl � �jl, ð16Þ

subject to

Xnþk�1

j¼k

Xl¼Bj

l¼1

�jl �Mð�jlÞ � 1, ð17Þ

Xl¼Bj

l¼1

�jl ¼ 1, j ¼ k, . . . , nþ k� 1, ð18Þ
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�jl � 0, j ¼ k, . . . , nþ k� 1 and l ¼ 1, . . . ,Bj: ð19Þ

Constraint (17) is the PM index constraint for the block. Constraint sets (18) and (19)

ensure that the model chooses processing times that are convex combinations of the

breakpoints.
Based on the above findings, we designed an LP-based algorithm for the PM

block subproblem. The LPB algorithm first orders the jobs in ascending order of

their pli. This is due to property 3.1. The jobs must be in the SPT order at optimality,

therefore it is more effcient to put the job that can have the minimum processing time

in the first position. We solve the piecewise linear approximation model for this job

sequence. If there are too many jobs in the block, then the PM index constraint may

not be satisfied and the problem turns out to be infeasible. After solving the LP, the

resulting schedule may not satisfy the SPT rule due to the breakpoints. In such a

case, we re-sequence the jobs by the SPT rule and stop. We can express the LPB

method as follows.

. Step 1: Sequence the jobs in the block in ascending order of their pli (i.e.

apply the SPT rule for pli of the jobs).
. Step 2: Solve the piecewise linear approximation model for the block.
. Step 3: If the LP is infeasible, then stop, the block is infeasible. Else, if the

achieved processing times from solving the LP model violate the SPT rule,

then reorder the jobs by the SPT rule.

We applied the LPB method to the first blocks of the child schedules achieved in

Stage 1 of the numerical example. We used the breakpoints (1.1, 1.2, 1.3, . . . , 12.2,

12.3) for the piecewise linear approximation of the PM index function. We give the

resulting child schedules in figure 4. It can be seen from figure 4 that, after adding

new jobs to the first PM block, we need to increase the processing times of the jobs in

the block. For the first child schedule, we have a total completion time of 77.9, which

is better than the completion time of the initial schedule (82). For the second child,

it is 72.3. Note that removing a PM visit improves the total completion time. For the

1
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Figure 4. Child schedules in Stage 1 (LPB method applied).
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third schedule it is 79.1, which is worse than the second child schedule. We have six
jobs in the first block in child 3 and in order to satisfy the PM index constraint we
need to increase the processing times of the jobs excessively and achieve a schedule
that is worse than the second child schedule.

Since we need to solve the PM block subproblems many times in the branching
process, calling the LP solver each time and solving the problem may be
computationally inefficient. Therefore, we propose alternative approaches.
The second approach is the first update shortest method (FUS), which is discussed
in the next subsection.

4.2.2 First update shortest method (FUS). The FUS method first sets the processing
time of each job to its lower bound (pli) at which the PM index of the job is at a
maximum. Then, in each iteration, it increases the processing time of the shortest job
to the next breakpoint, until the total PM index of the block is less than or equal to 1.
The breakpoints used by the FUS method are the same as the points used by the LPB
method. The LPB method tries to minimize the processing time effect of the jobs,
so that the position information for each job is included in the objective function.
However, the FUS method ignores the position information of each job and just tries
to keep the length of the PM block as short as possible. We give the steps of the FUS
method below.

. Step 1: Set pi ¼ pli for each job i, and order the jobs by the SPT rule.

. Step 2: While the total PM index of the block is greater than 1, carry out
the following steps.

– Step 2.1: Take the shortest job i and if pi5pu, set pi ¼ p0i, where p0i is the
next breakpoint for job i. Else, if pi� pu, then the block is infeasible.

– Step 2.2: Update
Pnþk�1

j¼k Mð pjÞ.
– Step 2.3: If the resulting schedule violates the SPT rule, reorder the jobs by

the SPT rule.

Since M(pj) is a convex function, the PM index decrease per unit processing time
increase is greater for smaller processing times, so the FUS method always updates
the shortest job in the block. It considers the makespan of the block rather than the
processing time effect of each individual job. The FUS method is easier and faster to
implement than the LPB method. We applied the FUS method for the third child of
Stage 1 in the numerical example, and the resulting schedule is given in figure 5.
When we compare the schedule achieved by the FUS method in figure 5 with child 3
in figure 4, we see that the LPB method achieved a better total completion time (79.1)

1 2 3 4 5 6

Child 3 (total completion time=80.1)

7 8

Mi

Pi

0.17 0.17 0.17 0.16 0.16 0.16

2.0 2.0 2.0 2.1 2.1 2.1 1.6 1.7

Figure 5. Child 3 in Stage 1 (FUS method applied).
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than the FUS method (80.1). In the next subsection we give the total completion
index (TCI) method.

4.2.3 Total completion index method (TCI). The TCI method starts with the same
initial solution as the FUS method and increases the processing time of a selected job
at each iteration like the FUS method. The difference between the two methods is
that the TCI method selects the job to be updated by considering the positions of the
jobs. The TCI method calculates an index (Ci) for each job i which measures the
change in the processing time effect per change in the PM index to be achieved by
setting the processing time of job i to its next breakpoint. This index is denoted the
total completion index and for job i at position k we can calculate the index as
follows:

Ci ¼
ðN� kþ 1Þð p0i � piÞ

ðMð piÞ �Mð p0iÞÞ
,

where pi is the current processing time of job i and p0i is the next breakpoint for job i.
Obviously, the job with minimum Ci seems to be the best job to update. We give the
steps of the TCI method below.

. Step 1: Set pi ¼ pli for each job i, and order the jobs by the SPT rule.

. Step 2: While the total PM index of the block is greater than 1 do the
following steps.

– Step 2.1: Find job i (for which pi� pu) with the minimum Ci. If no such job
exists, then the block is infeasible. Else, set pi ¼ p0i.

– Step 2.2: If the resulting schedule violates the SPT rule, reorder the jobs by
the SPT rule.

– Step 2.3: Update the Ci indices of job i and all rescheduled jobs in Step 2.2.

The TCI method selects the job that gives the minimum processing time effect
change per PM index change when we set its processing time to the next breakpoint.
At each iteration, it reorders the jobs by the SPT rule and it recalculates the total
completion indices of the jobs after reordering them. In figure 6 we give the child
schedule 3 at Stage 1 achieved by applying the TCI method. Since this method uses
the position information for the jobs, it gives a better total completion time (79.7)
than the FUS method (80.1).

We have proposed three heuristics to solve the PM block subproblem. In the next
subsection we will discuss the fine tuning approach. Fine tuning is an intensification
method for the branching process and it generates alternative child schedules inside
the branching process.
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Child 3 (total completion time=79.7)

7 8

Figure 6. Child 3 in Stage 1 (TCI method applied).
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4.3 Fine tuning in the branching process

As explained in section 4.1, in the branching process we generate child schedules by

shifting jobs to an earlier PM block. The number of jobs to be shifted to form the kth

child schedule of a parent schedule is determined by the PM index value k�. In fine

tuning, for a parent schedule achieved in the branching process, we select the child

schedule with minimum total completion time, say child k. We generate

two additional child schedules using the neighbour PM index values of k�,
i.e. (kþ1/2)� and (k�1/2)�. When �¼ 0.4, and if we obtain the best child of a parent

schedule with a PM index value of 0.8, then we also generate child schedules by

moving sets of jobs with total PM index less than or equal to 0.6 and 1.0. Child

schedule formation is the same as in the branching process such that if the total PM

index of the jobs that can be moved is less than the requested level, then we move all

the jobs to the considered PM block. Fine tuning looks for better alternatives in the

neighbourhood of the best schedule achieved from a parent schedule. The motivation

behind the fine tuning is the behaviour of the total completion times of the child

schedules generated from a parent schedule. When we analyse the total completion

time values of the child schedules of a parent schedule, we observe that, as k increases

in k�, the resulting total completion times of the child schedules first decrease and

then increase. This is also the case for the child schedules in figure 4. This behaviour

shows that looking for possible child schedules in the neighbourhood of the best

child schedule may provide better schedules. Therefore, we apply fine tuning for each

parent schedule at each stage of the branching process.
In the numerical example for Stage 1, by fine tuning we generated two more

alternative child schedules. Since the best child schedule generated is child 2, we

moved sets of jobs with total PM indices of 0.6 and 1.0 to form child 4 and child 5,

shown in figure 7. For the first PM block of each new child schedule, we solved the

PM block subproblem using the LPB method. Child 4 is the same as child 1, but

child 5 is a new schedule with five jobs in its first PM block. We generated schedules

with three, four and six jobs in the first block previously, but fine tuning generated

the schedule with five jobs in the first block. After we applied the fine tuning step, we

completed the child formation part of Stage 1 in the numerical example. The best

schedule achieved is child 2 with a total completion time of 72.3.
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Figure 7. Child schedules generated by fine tuning.
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Next, in the numerical example, we select two parent schedules from the five child
schedules. Child 2 is the one with the minimum total completion time (72.3), but it
only has two blocks and therefore it cannot be a parent schedule for Stage 2.
Similarly, child 3 and child 5 cannot be parents either. Since the schedules in child 1
and child 4 are identical, we have one parent schedule for the next stage. In Stage 2
we generated child schedules by moving jobs forward to the second block of the
parent schedule. We generated two child schedules in Stage 2, which are given in
figure 8. Since these schedules have at most three blocks, they cannot be selected as
parents for Stage 3, and the branching process ends. The best schedule achieved by
the branching process is child 2 in Stage 1 given in figure 4. Up to this point, we have
discussed the branching process, the PM block subproblem and the fine tuning
approach. In the next subsection we discuss the improvement methods that can be
applied after the branching process.

4.4 Improvement methods

Motivated by the optimality properties given in section 3, we propose two
improvement steps to be applied to the schedule achieved by the branching process.
The first is the Last Block Improvement procedure, which will be discussed in the
next subsection. The second is Block Rearrangement.

4.4.1 Last block improvement (LBI). The branching process may terminate with
a schedule whose last block has a total PM index strictly less than 1. From
property 3.2 we know that, in such a case, pi ¼ p1i for each job i in the last block.
In preceding blocks there may exist jobs that have greater processing times but
smaller processing time lower bounds than some of the jobs in the last block. If we
can find such job pairs, one from the last block and the other from the preceding
blocks, then we can pairwise interchange these two jobs. This allows us to schedule
the jobs with smaller processing time lower bounds in the last block. We set the
processing times of the jobs in the last block to their lower bounds and if the total
PM index of the last block exceeds 1 we solve the subproblem for the block. In this
way we can improve the total processing time effect of the last block and improve the

4
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Figure 8. Child schedules in Stage 2.
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total completion time of the schedule. The LBI method is motivated by property 3.2
(Block Utilization). If the last block of the schedule is fully utilized, the LBI method
cannot achieve any improvement. Therefore, before applying the LBI method, we
check the total PM index of the last block of the schedule and if it is less than 1� �,
where � is a user-defined value, we apply the method, otherwise we omit it.

We applied the LBI method to the best schedule (child 2 in Stage 1 of figure 4)
achieved by the branching process. Jobs 1, 4 and 7, 8 are interchanged between
blocks and the resulting schedule is given in figure 9. Observe that the processing
times of 7 and 8 are set to 1.7 and 1.45 (the processing times for jobs 4 and 1 before
interchanging), respectively. The processing times of 1 and 4 are set to 1 and 1.4, but
then the total PM index of the last block exceeds 1, and we solved the block
subproblem for the last block using the LPB method. After applying the LBI
method, the total completion time is improved from 72.3 to 71. In the next
subsection we describe the second improvement step, Block Rearrangement.

4.4.2 Block rearrangement. Block Rearrangement is the application of the block
ordering rule given in property 3.3 of section 3. In this method, we first check if the
PM blocks of the schedule are ordered in ascending order of their average processing
times or not. If not, we order the blocks and then solve the PM block subproblems
for the affected blocks, since re-sequencing the blocks changes the positions of the
jobs in the schedule. We repeat the steps of reordering the blocks and solving the PM
block subproblems until we achieve a schedule where the PM blocks are in ascending
order of their average processing times. In the numerical example, for the schedule
achieved by the LBI in figure 9, the average processing times for blocks 1 and 2 are
2.05 and 2.11, respectively. They satisfy the condition in property 3.3 and we do not
need to re-sequence them.

Thus far, we have described the branching process, the fine tuning process
and the improvement methods which form the main steps of our search algorithm.
We have also discussed three alternative approaches to solve the PM block
subproblem. We have discussed how each procedure can be applied on a numerical
example. Using these methods given above we designed five different versions of the
search algorithm. The first is the search algorithm using the LPB method. In the next
subsection we describe the algorithms in logical sequence.

4.5 Search algorithm using the LPB method (SLPB)

The SLPB algorithm uses the LPB method to solve the PM block subproblems that
arise in the branching process, the last block improvement and the block
rearrangement steps. The steps of the SLPB algorithm are as follows.

Pi 1.45 1.5 1.6 1.7 1.3 1.4 1.63

328 7 1 4 5 6

2.2

Schedule after Last Block improvement (total completion time=71)

Figure 9. Schedule achieved by applying the LBI method.
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. Step 1 (finding the initial schedule): Set pi ¼ pli for each job i. Find a

schedule by sequencing the jobs using the SPT rule and inserting the PM

visits into the schedule where needed.
. Step 2: Set the algorithm parameter �.
. Step 3 (branching process): Set the initial schedule as a parent schedule

for Stage 1 and as the best schedule achieved so far. Initialize the stage

counter, s¼ 1.

– Step 3:1: For each parent schedule in Stage s perform Steps 3.1.1

to 3.1.6.

� Step 3.1.1: Generate C child schedules by moving forward the jobs of

the total PM index �, 2�, . . . , C� to the sth block of the parent schedule.
� Step 3.1.2: Solve the PM block subproblem for the sth block of each

child schedule using the LPB method.
� Step 3.1.3: Select the child schedule with the minimum total comple-

tion time, denoted child k.
� Step 3.1.4 (fine tuning): Generate two new child schedules from the

parent schedule by shifting jobs of the total PM index (kþ1/2)� and

(k�1/2)� to the sth block.
� Step 3.1.5: Solve the PM block subproblem for the sth block of each

child schedule generated in Step 3.1.4.
� Step 3.1.6: Update the best schedule achieved so far if a better schedule

exists among the child schedules generated in Stage s.

– Step 3.2: Select P parent schedules from the child schedules achieved in

Stage s. If no child schedule qualifies to be a parent schedule for Stage

sþ 1, then go to Step 4. Otherwise, go to Step 3.1.

. Step 4 (last block improvement): If the total PM index of the last block of

the best schedule achieved so far is less than 1��, then go to Step 4.1.

Otherwise, go to Step 5.

– Step 4.1: Starting from the first job of the last block, for each job k of the

last block we search for a job i with the minimum pli (in all PM blocks

except the last block), such that pli < pk. If found, interchange the positions

of jobs i and k. Set pk¼ pi and pi ¼ pli. Otherwise, go to Step 4.2.
– Step 4.2: If the total PM index of the last block exceeds 1, solve the PM

block subproblem for the last block using the LPB method.

. Step 5 (block rearrangement): Evaluate the average processing time value

for each PM block in the schedule.

– Step 5.1: If the blocks are in ascending order of their average processing

times, then go to Step 6. Otherwise, order the blocks in ascending order of

average processing times and go to Step 5.2.
– Step 5.2: Solve the PM block subproblems for all blocks using the LPB

method and go to Step 5.

. Step 6: Report the best schedule achieved so far.
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In Step 1 we form an initial schedule for the search algorithm. In Steps 3.1.1 to
3.1.3 we generate child schedules for a parent schedule in Stage s by moving jobs to
its sth block and then solving the PM block subproblem using the LPB method.
In Steps 3.1.4 and 3.1.5 we apply the fine tuning method using the best child schedule
found in the previous steps (3.1.1 to 3.1.3). In Step 4 we apply the last block
improvement procedure which utilizes the available PM capacity in the last block
of the schedule. Finally, in Step 5, we apply the block rearrangement process
iteratively, which sequences the PM blocks in ascending order of average processing
times and solves the block subproblems using the LPB method.

The SLPB algorithm employs the LPB method to solve the PM block
subproblems. During the branching process, each time a PM block subproblem is
to be solved, the SLPB algorithm formulates an LP problem and calls an LP solver to
solve it. Although the LPB method is more efficient in solving the subproblems,
it may require too much computational effort, so we propose alternative versions
of the search algorithm that use the FUS and TCI methods.

4.6 Search algorithms using the FUS method

In this subsection we give three different versions of our search algorithm. These
algorithms mainly use the FUS method to solve the PM block subproblems, but two
of them also utilize the LPB method. The first version is SFUSI, which employs the
FUS method to solve the PM block subproblems that arise in Steps 3.1.2, 3.1.5 and
4.2. In the block rearrangement procedure, SFUSI omits Step 5.2 since the FUS
method solves the block subproblems independent of the positions of the jobs.
Therefore, the block rearrangement step (5.1) is applied only once.

Since the FUS method is not sensitive to the positions of the jobs but is
computationally efficient to use, we propose another version (SFUSII) of the search
algorithm that applies the FUS method in the branching process, but utilizes the
LPB method in the improvement steps. As for the SFUSI algorithm, this algorithm
employs the FUS method to solve the PM block subproblems in the branching
process (Step 3.1.2) and the fine tuning process (Step 3.1.5). Differently, SFUSII

applies the LPB method to solve the block subproblem for each PM block of the best
schedule achieved by the branching process in Step 3.2. The LPB method is more
efficient than the FUS method in solving the block subproblems, but it requires more
computational effort. Therefore, in the branching process we call the LPB method
just for the final schedule achieved by the branching process, which can make a
significant difference in the solution quality while requiring marginal additional
computation time. The remaining steps of SFUSII for the last block improvement and
the block rearrangement are the same as for the SLPB algorithm, therefore it utilizes
the LPB method to solve the PM block subproblems that arise in these improvement
procedures.

The last version of the FUS-based algorithms is SFUSIII. This algorithm is the
same as SFUSII except that it includes a test to decide whether or not to apply the
LPB method to solve the PM block subproblems in Steps 3.2 and 5.2. The test
procedure roughly checks if an improvement is possible, if we use the LPB method
on a PM block or not, in order to save computational time.
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Test procedure for a PM block:

. Step 1: Starting from the first job in the block, find the first job i whose
processing time can be set to its previous breakpoint. If found, then go to
Step 2. Else, stop, LPB will not be applied.

. Step 2: Calculate the possible PM index loss and total completion time
gain that would occur by setting job i to its previous breakpoint without
changing its position.

. Step 3: Set j as the last position in the block.

. Step 4: Calculate the PM index gain and total completion time loss that
would occur by setting the last job j in the block to its next breakpoint.

. Step 5: If the PM index loss for job i in Step 2 and the PM index gain for
job j in Step 4 result in a feasible block with total PM index less than or equal
to 1, and if the total completion time gain in Step 2 is greater than the total
completion time loss in Step 4, stop; the LPB method will be applied to the
block. Else, if j is the immediate successor of job i, then stop; no more jobs to
be processed. Else, set j¼ j�1 and go to Step 4.

In Step 1 the test procedure finds a job in order to reduce its processing time to
the previous breakpoint. The first available job is selected since the processing time
decrease could result in a greater total completion time gain. In Step 2 we calculate
the possible PM index loss and total completion time gain for the selected job. Then
in Steps 3 to 5 the procedure looks for another job in order to increase its processing
time to the next breakpoint so that the resulting total PM index of the block is still
less than 1 but the total completion time objective is improved. This test is applied
for all blocks of the schedule achieved in Step 3.2, starting from the first block up to
a block for which it decides to apply LPB or ends with the last block. If the test
decides to apply LPB to block i, then LPB is applied to block i and to all the blocks
succeeding block i. The last version of the search algorithm, which uses the TCI
method, is given in the next subsection.

4.7 Search algorithm using the TCI method (STCI)

We have described four versions of the search algorithm which use the LPB and FUS
methods. The last version (STCI) of the search algorithm employs the TCI method for
PM block subproblems. The STCI algorithm is the same as SLPB except that instead
of the LPB method, it applies the TCI method to solve the PM block subproblems
arising in Steps 3.1.2, 3.1.5, 4.2, and 5.2. In the next section we discuss the
experimental design and give the computational results for these algorithms.

5. Computational results

In this section we present the computational results for the proposed search
algorithms. We coded the algorithms in C language and compiled using the Gnu C
compiler version 2.95.3. We ran the codes on a Solaris 2.7 operating system using a
Sun HPC 4500 workstation with a 12� 400MHz UltraSPARC CPU and 3GB
memory. In coding the LPB method, we used the library routines of the CPLEX 9.1
commercial solver.
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In the computational study we consider a CNC turning machine with a maximum
applicable cutting power of 10 hp. Each job to be operated on this machine
corresponds to a turning operation. The processing time lower bound (pli) for a
turning operation is determined by its cutting specifications, required cutting tool
type and the surface quality. Therefore, for each replication we generated cutting
specifications (diameter, length, depth of cut and required surface roughness) for the
jobs randomly as discussed by Kayan and Akturk (2005). We considered problems
with 2000 jobs, which corresponds to a 5-day production rate if the machine
produces at a rate of one job/min on average. There are three experimental factors,
given in table 1, which can affect the efficiency of the algorithms. The first
experimental factor is the TPM level, which is the PM visit duration for the machine.
It influences the PM effect component of the total completion time objective. When
TPM¼ 30 we set �¼ 0.4, else �¼ 0.6. If the duration of a PM visit is long, then while
forming the child schedules in the proposed search algorithm, moving more jobs
forward could reduce the number of PM visits, therefore we prefer to use a higher
� value. The other two experimental factors are A and B (the coefficients used in the
PM index function), which affect the function behaviour. Other PM index function
coefficients are CPM¼ 10, T¼ 2000, and k¼ 2.5. We consider two levels for each
factor, so we have a 23 full factorial design. We took 10 replications for each factorial
setting. Another critical decision in the experimental study is the selection of
breakpoints for the piecewise linear approximation of the PM index function. For
each PM function, we generated breakpoints in such a way that the difference
between the approximate and real function values at any point is less than a certain
relative error � of the real function value, i.e. ð ~fðxÞ � fðxÞÞ=fðxÞ � �, where ~f ðxÞ is the
approximate function value and f(x) is the real function value at point x. We tested
two levels of �, 0.01 and 0.05. We set P¼ 8, C¼ 6, and �¼ 0.05, and the number of
child schedules to be generated by fine tuning is 2.

In figure 10 we first give the average total completion time values for the
schedules achieved in different steps of the SFUSII algorithm. Figure 10 shows that,
on average, the branching process (Step 3.2) achieves a 45% improvement in the
total completion time objective compared with the initial solution (Step 1). For the
final schedule achieved in Step 6, the average improvement with respect to the initial
schedule reaches 55%.

Figure 11 highlights the importance of proposing an integrated approach with
controllable processing times. In most studies in the literature, the processing times
are assumed to be fixed. If we want to minimize the processing time effect on the
total completion time objective, then we should set pi¼ pl for each job i and schedule
them with respect to the SPT rule. On the other hand, in order to minimize the PM
effect on the total completion time objective, we should set pi¼ pu for each job i.
Controllable processing times provide flexibility in finding solutions with better

Table 1. Experimental design factors.

Factor Definition Level 1 Level 2

TPM PM duration 30 90
A PM index function parameter 10 20
B PM index function parameter 30 45
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Figure 11. Performance of the SFUSII algorithm.
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overall objective function values. To demonstrate the value of controllable
processing times, we first solved all of the test problems with fixed processing
times (pl and pu) and with the proposed SFUSII algorithm, as shown in figure 11.
We first compare the schedules found using fixed pl or pu. Using fixed pl instead of pu

gives better performance when TPM is at a low level (Cases 1 to 4), and pu performs
better when TPM is at a high level (Cases 5 to 8), as expected. We can see that the
proposed search algorithm gives significantly better total completion time values
than the others for all 23 experimental settings. This is because our search algorithm
finds solutions where the two terms in the total completion time objective are
balanced to minimize the overall objective.

In table 2 we give the total completion times and the CPU times (in seconds)
achieved using five different versions of the search algorithm for two different levels
of the relative error �. The results show that allowing a relative error level of 0.05
instead of 0.01 results in an almost 50% gain in CPU time but only a 0.2% loss in the
objective function. We also observe that the total completion time values achieved by
the different algorithms are similar. However, the computational effort required by
each method is different. The relationship between the CPU time requirements of the
different search algorithms is SFUSI�SFUSIII�SFUSII�STCI�SLPB. SLPB has the
maximum CPU time requirement since it calls the LP solver each time it solves a PM
block subproblem. Compared with FUS-based methods, STCI requires additional
computation time for computing the TCI indices of the jobs. Similarly, SFUSII and
SFUSIII call the LP solver, which requires additional computation time compared
with SFUSI.

Although the average total completion time values achieved by the different
versions of the search algorithm are similar, we applied a paired t-test to the
completion time values of the 80 randomly generated runs found by these algorithms
to check the statistical significance of their differences, as given in table 3. The results
show that SFUSII outperforms all other versions of the search algorithm. Also, we see
that SFUSIII performs the worst. We do not observe a statistically significant
difference between SFUSI, STCI and SLPB. In table 4 we summarize the number of
times the minimum total completion time value of a certain algorithm outperforms
the others for different TPM levels. Note that more than one algorithm can have the

Table 2. Results of the algorithms for different relative error levels.

Objective CPU seconds

Relative error Algorithm Min. Max. Average Min. Max. Average

0.01 SLPB 1 148 440 2 162 737 1 605 280 92.90 139.88 114.73
STCI 1 148 232 2 163 108 1 605 236 35.63 121.16 69.23
SFUSI 1 148 234 2 163 133 1 605 236 8.07 21.10 13.07
SFUSII 1 148 151 2 162 724 1 604 698 11.39 27.11 17.13
SFUSIII 1 148 152 2 169 241 1 606 404 9.7 22.98 14.68

0.05 SLPB 1 149 300 2 172 240 1 608 711 51.25 67.67 59.06
STCI 1 149 531 2 173 199 1 608 437 20.64 59.58 35.86
SFUSI 1 149 540 2 173 199 1 608 415 5.43 10.96 7.45
SFUSII 1 149 211 2 172 240 1 607 827 6.71 13.72 9.28
SFUSIII 1 149 539 2 173 199 1 609 740 5.48 10.95 7.58
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best value for a certain run if there is a tie. We see that SFUSII achieved the best
solution in 68 of 80 problems. SLPB achieved the best result 14 times, 11 of which was
when TPM was at a low level.

In this section we have implemented our search algorithm on large sized (2000
jobs) instances of the problem. The results show that our search algorithm can
generate high solution quality in a very short computation time. The algorithm can
solve larger or smaller instances using appropriate algorithm parameters such as �,
the number of parent schedules (P) and the number of child schedules (C ).

6. Concluding remarks

This paper deals with a scheduling problem that integrates process planning, PM
planning and scheduling decisions to minimize the total completion time of a set of
jobs. We employ a PM planning approach which, different from the current
literature, considers the impact of the operating conditions (i.e. controllable
processing times) on the maintenance requirements such that applying shorter
processing times (or a higher production rate) requires more frequent PM visits.
We show that there is a nonlinear relationship between the maintenance requirement
of a machine and the selected processing times. We provide optimality properties for
this problem and we propose a heuristic search algorithm based on these properties.

Table 4. Number of best results achieved by each algorithm.

Number of best results

Algorithm TPM¼ 30 TPM¼ 90 Total

SFUSII 30 38 68
SFUSI 0 0 0
SLPB 11 3 14
STCI 0 1 1
SFUSIII 6 0 6

Table 3. Paired t-test results.

95 CI for mean

Pairs Mean SD Lower Upper Sig.

SFUSI, SFUSII 285.2 205.2 239.5 330.9 0.0
STCI, SFUSII 538.0 1442.2 217.1 859.0 0.001
SLPB, SFUSII 582.0 1658.0 213.0 951.0 0.002
SFUSIII, SFUSII 1705.6 2478.8 1154.0 2257.2 0.0

STCI, SFUSI 252.8 1451.8 �70.3 575.9 0.123
SLPB, SFUSI 296.8 1652.7 �71.0 664.6 0.112
SLPB, STCI 44.0 886.9 �153.4 241.4 0.659

SFUSIII, SFUSI 1420.4 2394.7 887.5 1953.3 0.0
SFUSIII, STCI 1167.6 2578.4 593.8 1741.4 0.0
SFUSIII, SLPB 1123.6 2442.0 580.1 1667.0 0.0
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The proposed algorithm can be used to determine the processing times, the job and

PM scheduling decisions simultaneously. We also propose alternative improvement

and subproblem solution methods to be used in the search algorithm.

The computational results show that the proposed algorithms can achieve a high

solution quality by balancing the processing time effect and the PM effect terms in

the objective function. Even for the 2000-job case, the algorithm requires quite

a small computational effort.
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